I.	In a	an atom of	hydrogen, which of the fo	ollowing orbita	ls has the low	vest energy for	an electron present in				
	(1)	2p	(2) 2s	(3)	4p	(4)	None of these				
2.	The	e filling of o	electrons in different orbita	als of an atom	in increasing	order of their e	nergy is called				
	(1)	Aufbau pr	rinciple.	(2)	Joule's states	ment.					
	(3)	Uncertain	ty principle.	(4)	Pauli's exclu	sion principle.					
3.	Tw	o electrons	occupying the same orbita	al are distingui	shed by						
	(1)	magnetic	quantum number.	(2)	azimuthal qu	antum number					
	(3)	principal o	quantum number.	(4)	spin quantun	n number.					
4.	Rut	therford a-	particles scattering experin	nent eventually	y led to the co	nclusion that					
	(1)	the point	of impact of matter can be	determined.							
	(2)	electrons	occupy space around the n	ucleus.							
	(3)	neutrons a	are not present in the nucle	us.							
	(4)	mass and	energy are related.								
5.	The	e most prob	able valency of an elemen	t with electron	ic distribution	of 1s2, 2s2, 2p	*, 3s ² 3p ⁴ is				
	(1)	+3	(2) -2	(3)	-3	(4)	+2				
6.	Wh	Which of the following is wrong about electron?									
	(1)	It has a particle nature.									
	(2)	It has a dual nature.									
	(3)	It gives or	at energy while moving in	orbits.							
	(4)	Its motion	is affected by electric fiel	ld.							
7.	On	moving ac	ross a period from left to r	ight the ionisat	tion energy in	creases becaus	c				
	(1)	value of p	rincipal quantum number	increases.							
	(2)	effective i	nuclear charge increases.								
	(3)	atomic siz	re increases.								
	(4)	nuclear ch	narge increases.								
8.	Wit	th the incre	ase in atomic number in a	period of the p	eriodic table						
	(1)	electron a	ffinity decreases.	(2)	metallic char	acter decrease	S.				
	(3)	ionization	energy decreases.	(4)	atomic mass	decreases.					
9.	Per	iodicity in	the properties of the eleme	nts is due to							
	(1)	regular de	crease in atomic weight of	the elements.							
	(2)	periodicity	y in the electronic configu	ration of eleme	ents.						
	(3)	regular in	crease in atomic number o	f the element.							
	(4)	regular in	crease in atomic size of the	e elements.							
43/	A/2K	14/05		(2)							

10.	The elements in them	a vertical group in a perio	odic table show similarity in	chemical behavior because all							
	(1) form ions by the loss of electrons.										
		valence shell electronic o	onfiguration.								
		etals or non-metals.									
	(4) None of the										
11.	In the first transi	tion series, the incoming e	lectron enters								
	(1) 2d orbital	(2) 4 <i>d</i> orbital	(3) 3d orbital	(4) None of these							
12,	The atoms of ele	ments placed in a group m	ust have the same								
	(1) number of n	nesons.	(2) number of elec-	trons in valence shell.							
	(3) number of e	lectrons in inner shell.	(4) number of prot	ons in valence shell.							
13.	An element A ha	s atomic number 7. It will	have properties similar to th	ne element with atomic number							
	(1) 85	(2) 57	(3) 26	(4) 51							
14.	Covalent charact	er of an ionic compound i	ncreases with								
	(1) decrease in	anion size .	(2) decrease in cati	on size.							
	(3) increase in c	ation size,	(4) decrease in bot	h cation and anion size.							
15.		llowing is the name give coxygen molecule?	n to the pairs of valence e	lectrons that do not participate							
	(1) unvalenced	pair (2) inner pair	(3) outer pair	(4) unshared pair							
16.	The increase in b	ond order results in									
	(1) increase in b	ond length and bond ener	gy.								
	(2) decrease in	oond length and bond ener	gy.								
	(3) decrease in l(4) None of the	oond length and increase is se	n bond energy.								
17.	When a polar mo	elecule attracts the electron	in a nonpolar molecule								
	(1) a dipole is in	iduced.	(2) an ionic bond f	orms,							
	(3) a crystal latt	ice forms.	(4) a Lewis structu	re forms.							
18.	Smaller the size	of ion									
	(1) lesser is the	degree of hydration.	(2) lesser is the pol	arizing power.							
	(3) greater is the	e electron affinity.	(4) greater is the de	egree of hydration.							
19.	Among the alkal	ine earth metals, the eleme	ent that forms mainly covale	ret compounds is							
	(1) beryllium	(2) magnesium	(3) calcium	(4) zinc							
43//	V2K14/05		(3)								
200			2,7925								

in

20.	Which of the following is soluble in	ether?							
	(1) SrCl ₂ (2) CaCl ₂	(3) BaCl ₂	(4) BeCl ₂						
21.	Sodium reacts with water more vigor	ously than lithium because it							
	(1) is more electropositive.	(2) has more electrone	egativity.						
	(3) has higher atomic mass.	(4) None of these							
22.	Biodegradable pollutant is								
	(1) Plastic (2) Asbestos	(3) Sewage	(4) Mercury						
23.	The main pollutant in the waste water	r of leather tanneries is due to the salt	of						
	(1) lead (2) chromiun	(VI) (3) copper	(4) chromium (III)						
24.	Which of these reactions in the atmo-	sphere leads to acid rain?							
	 Magnesium + Oxygen → Magne 	esium dioxide							
	(2) Sulphur + Oxygen → Sulphur d	ioxide.							
	(3) Carbon dioxide + Hydrogen →	Hydrogen carbonate							
	(4) Sulphur dioxide + Water → Sul	phuric acid							
25.	Which one of the following is mainly	responsible for depletion of ozone la	xyer?						
	(1) Water vapour (2) Carbon di	oxide (3) Methane	(4) Chlorofluorocarbon						
26.	Smog is essentially caused by the pro	esence of							
	(1) O ₂ and O ₃	(2) O ₃ and N ₂							
	(3) Oxides of sulphur and nitrogen	(4) O_2 and N_2							
27.	Which of the following is least likely	to be an effect of global warming?							
	(1) Loss of fertile delta regions for agriculture								
		(2) Change in global patterns of precipitation							
	(3) Extinction of some species that have narrow temperature requirements								
	(4) None of these								
28.		The state of the s							
	 carbon dioxide, nitrogen and oza 								
	(2) ehlorofluorocarbons and nitrogen								
	carbon dioxide, methane, ozone								
	(4) chlorine, ozone and water vapou	r							
29.	The increase in equivalent conductiv	ity of strong electrolytes on dilution is	s due to						
	(1) increase in number of ions per n	nl, (2) increase in inter-io	onic attraction.						
	(3) decrease in inter-ionic attraction	. (4) increased dissociar	tion.						
43//	V2K14/05	(4)							

30.	An electrochemical cell can be changed into	an electrolytic cell by	
	(1) changing the electrolytes in two half cell		
	(2) changing the conc. of the electrolytes.		
	(3) providing higher potential from outside.		
	(4) reversing the electrodes.	* 9	
31.	The increase in rate of reaction with tempera	ture is due to	
	(1) increase in the number of active molecul	es.	
	(2) increase in the average kinetic energy of	the reacting molecules.	
	decrease in activation energy.		
	(4) increase in number of collisions.		
32.	Which of the statements is false regarding ca	talyst?	
	(1) It increases the rate of the forward reacti	on, but does not alter the reverse reaction rate	
	Alters the mechanism of reaction.		
	Alters the activation energy.		
	(4) Increases the rate of reaction, but is not	consumed.	
33.	Which of the following statements is in accor-	rdance with the Arrhenius equation?	
	 Rate of a reaction has no effect with ince 	NOTE: 10 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	
	(2) Rate of a reaction increases with decrease	e in activation energy.	
	(3) Rate constant decreases exponentially w		
	(4) Rate of reaction decreases with decrease	in activation energy.	
34.	이 그 이번 이번에서 15 이렇게 내려가 되었다면 되었다면 하셨다면 되었다면 되었다면 하다.		
	(1) The order of a reaction can be a fractional		
	(2) Order of a reaction is experimentally dete	마이마이트 마이트 시구 시간 시간 이 아이를 보고 있다. 그 나는 아이트	
	(3) The order of a reaction is always equal to balance chemical equation for a reaction.	the sum of the stoichiometric coefficients of reactants in	the
	(4) The order of a reaction is the sum of the perfection.	powers of molar concentration of the reactants in the rate	aw
35.	Which of the following metals is extracted fr	om the ore by the process of electrolysis?	
	(1) Hg (2) W	(3) Al (4) Sn	
20		C C	
36,	[T136]	(2) they can withstand high temperature,	
	 they possess great structural strength. they are chemically inert. 	(4) they do not require replacement.	
	(3) they are chemically mert.	(4) they do not require replacement.	
37.			
	(1) form basic oxides.	(2) form acidic oxides.	
	(3) lose electrons.	(4) gain electrons.	
43/	A/2K14/05	(5)	

38.	Which of the foll	owing is most electro-negative	?		
	(1) Carbon	(2) Silicon	(3)	Lead	(4) Tin
39.	Acidified potassi	um permanganate solution is de	ecolou	rised by	
	(1) bleaching po	wder (2) white vitriol	(3)	Mohr's salt	(4) Nessler's reager
40.	Which of the foll	owing can reduce both Tollen'	s reage	nt and Fehling's solut	ion?
	(1) Benzaldehyd	ie (2) Acetaldehyde	(3)	Acetone	(4) Both (1) & (2)
41.	Which of the foll	owing will give an aldehyde or	oxida	tion?	
	(1) Methoxy eth	ane (2) 2-Methanal	(3)	2-Methyl propane	(4) 1-Propanol
42.	Which of the foll	owing functions is not associate	ed with	proteins?	
	(1) Contraction			Providing structural	material
	(3) Information	storage	1.770	Specific binding	
43.	Carbohydrates ar	e			
	(1) polyhydroxy	aldehydes and phenols	(2)	polyhydroxy aldehyd	les and ketones
	(3) polyhydroxy	ketones and phenols	(4)	polyhydroxy phenol	and alcohols
44.	Cellulose is made	up of repeating units of			
	(1) β-1-4 linkage	e between D-glucose units	(2)	β-1-2 linkage betwee	n D-glucose units
	(3) α-1-4 linkag	e between D-glucose units	(4)	α-1-2 linkage betwee	en D-glucose units
45.	Which of the foll-	owing is a reducing sugar?			
	(1) Glucose	(2) Dihydroxyacetone	(3)	Erythulose	(4) None of these
46.	A nucleoside is c	omposed of			
	(1) a base + a su	gar	(2)	a base + a sugar + ph	osphate
	(3) a base + a ph	osphate	(4)	None of these	
47.	Which of the follo	owing RNA serves as adaptor r	nolecu	le during protein synti	nesis?
	(1) rRNA	(2) mRNA	(3)	tRNA	(4) None of these
48.	Which of the follo	owing is known as anti-hemorr	hagie v	itamin?	
	(1) Vitamin E	(2) Vitamin K	(3)	Vitamin D	(4) Vitamin C
49.	Bakelite is made	by the action of			
	(1) ethylene glyc	col and phthalic acid		melamine and formal	
	(3) urea and form	naldehyde	(4)	phenol and formaldel	nyde
50.	Cordite is a/an				
	(1) sedative	(2) synthetic fibre	(3)	antifreeze	(4) explosive
43/4	J/2K14/05	(6)		

51. Let P(n): $n^2 < 2^n$. The smallest positive integer n for which P(n) is true is (1) 5 (2) 2 (3) 3 (4) 0 52. The area of a triangle with vertices (0, 0), (3, 3) and (-3, 3) is					(C)
52. The area of a triangle with vertices $(0,0)$, $(3,3)$ and $(-3,3)$ is	51.	Let $P(n)$: $n < 2$	". The smallest positive intege	er n for which P(n) is true	
(1) 9 (2) -9 (3) 3 (4) 6 53. If $\begin{vmatrix} x & 4 \\ 16 & x \end{vmatrix} = \begin{vmatrix} 8 & 4 \\ 16 & 8 \end{vmatrix}$, then x is equal to (1) 8 (2) ± 8 (3) -8 (4) 0 54. The principal value branch of the function \cos^{-1} is (1) $[0, \pi]$ (2) $[-1,1]$ (3) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (4) $\left[0, \frac{\pi}{2}\right]$ 55. The $f(x) = [x]$, where $[x]$ denotes the greatest integer function, is continuous at,		(1) 5	(2) 2	(3) 3	(4) 0
53. If $\begin{vmatrix} x & 4 \\ 16 & x \end{vmatrix} = \begin{vmatrix} 8 & 4 \\ 16 & 8 \end{vmatrix}$, then x is equal to (1) 8 (2) ± 8 (3) -8 (4) 0 54. The principal value branch of the function \cos^{-1} is (1) $[0, \pi]$ (2) $[-1, 1]$ (3) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (4) $\left[0, \frac{\pi}{2}\right]$ 55. The $f(x) = [x]$, where $[x]$ denotes the greatest integer function, is continuous at. (1) -2 (2) 1.2 (3) 4 (4) 1 56. $\frac{d}{dx}(\sin x + 5) = \cos x; x \in I$, then $\sin x + 5$ denotes (1) a family of anti derivates of $\cos x$ (2) an anti-derivative of $\cos x$ (3) derivative of $\cos x$ (4) None of these 57. Let $P(n): x^{2n} - y^{2n}$ is divisible by $x + y$. The smallest natural number n for which $P(n)$ is true is (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an objective function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point $P(0, -6)$ and $Q(6,0)$ is (1) 1 (2) -1 (3) 0 (4) $1/2$	52.	The area of a tri	iangle with vertices (0, 0), (3,	3) and (-3, 3) is	
(1) 8 (2) ± 8 (3) -8 (4) 0 54. The principal value branch of the function \cos^{-1} is (1) $[0, \pi]$ (2) $[-1, 1]$ (3) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (4) $\left[0, \frac{\pi}{2}\right]$ 55. The $f(x) = [x]$, where $[x]$ denotes the greatest integer function, is continuous at, $\frac{\pi}{4}$ (4) $\frac{\pi}{4}$ 56. $\frac{d}{dx}(\sin x + 5) = \cos x; x \in I$, then $\sin x + 5$ denotes (1) a family of anti derivates of $\cos x$ (2) an anti-derivative of $\cos x$ (3) derivative of $\cos x$ (4) None of these 57. Let $P(n): x^{2n} - y^{2n}$ is divisible by $x + y$. The smallest natural number n for which $P(n)$ is true is (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an object function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point $P(0, -6)$ and $Q(6,0)$ is (1) 1 (2) -1 (3) 0 (4) $1/2$		(1) 9	(2) -9	(3) 3	(4) 6
54. The principal value branch of the function \cos^{-1} is (1) $[0, \pi]$ (2) $[-1,1]$ (3) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (4) $\left[0, \frac{\pi}{2}\right]$ 55. The $f(x) = [x]$, where $[x]$ denotes the greatest integer function, is continuous at, (1) -2 (2) 1.2 (3) 4 (4) 1 56. $\frac{d}{dx}(\sin x + 5) = \cos x; x \in I$, then $\sin x + 5$ denotes (1) a family of anti derivates of $\cos x$ (2) an anti-derivative of $\cos x$ (3) derivative of $\cos x$ (4) None of these 57. Let $P(n): x^{2n} - y^{2n}$ is divisible by $x + y$. The smallest natural number $n = 1$ for which $n = 1$ is true is (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an object function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point $n = 1$ (2) $n = 1$ (3) 0 (4) 1/2	53.	$ \text{If } \begin{vmatrix} x & 4 \\ 16 & x \end{vmatrix} = \begin{vmatrix} 8 \\ 16 \end{vmatrix} $	then x is equal to		
(1) $[0, \pi]$ (2) $[-1,1]$ (3) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (4) $\left[0, \frac{\pi}{2}\right]$ 55. The $f(x) = [x]$, where $[x]$ denotes the greatest integer function, is continuous at. (1) -2 (2) 1.2 (3) 4 (4) 1 56. $\frac{d}{dx}(\sin x + 5) = \cos x; x \in I$, then $\sin x + 5$ denotes (1) a family of anti derivates of $\cos x$ (2) an anti-derivative of $\cos x$ (3) derivative of $\cos x$ (4) None of these 57. Let $P(n): x^{2n} - y^{2n}$ is divisible by $x + y$. The smallest natural number n for which $P(n)$ is true is (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an objet function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point $P(0, -6)$ and $Q(6,0)$ is (1) 1 (2) -1 (3) 0 (4) $1/2$		(1) 8	(2) ±8	(3) -8	(4) 0
 55. The f(x) = [x], where [x] denotes the greatest integer function, is continuous at	54.	The principal v	alue branch of the function co	s ⁻¹ is	
 (1) -2 (2) 1.2 (3) 4 (4) 1 (56. d/dx {sin x + 5} = cos x; x ∈ I, then sin x+5 denotes (1) a family of anti derivates of cos x (2) an anti-derivative of cos x (3) derivative of cos x (4) None of these (57. Let P(n): x²³-y²³ is divisible by x + y. The smallest natural number n for which P(n) is true is (1) 2 (2) 1 (3) 3 (4) 4 (4) only 2 (58. In a linear programming problem the number of minimum (or maximum) points attained by an object function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 (59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2 		(1) [0, π]	(2) [-1,1]	$(3) \left[\frac{-\pi}{2} \cdot \frac{\pi}{2} \right]$	(4) $\left[0,\frac{\pi}{2}\right]$
 56. d/dx(sin x + 5) = cos x; x ∈ I, then sin x+5 denotes a family of anti derivates of cos x an anti-derivative of cos x derivative of cos x None of these 57. Let P(n): x²²²-y²²² is divisible by x + y. The smallest natural number n for which P(n) is true is 2 (2) 1 3 3 4 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an object function can be 2 (2) more than 1 only 1 only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is 1 (2) -1 3 (3) 0 1/2 	55.	The $f(x) = [x]$,	where [x] denotes the greatest	integer function, is contin	nuous at,
(1) a family of anti derivates of cos x (2) an anti-derivative of cos x (3) derivative of cos x (4) None of these 57. Let P(n): x ²ⁿ -y ²ⁿ is divisible by x + y. The smallest natural number n for which P(n) is true is (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an object function can be (1) 2 (2) more than I (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2		(1) -2	(2) 1.2	(3) 4	(4) 1
 (3) derivative of cos x (4) None of these 57. Let P(n): x²ⁿ-y²ⁿ is divisible by x + y. The smallest natural number n for which P(n) is true is (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an object function can be (1) 2 (2) more than I (3) only I (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2 	56.	$\frac{d}{dx}(\sin x + 5) =$	$=\cos x; x \in I$, then $\sin x+5$ de	notes	
 57. Let P(n): x²n-y²n is divisible by x + y. The smallest natural number n for which P(n) is true is (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an objet function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2 		(1) a family of	anti derivates of cos x	(2) an anti-derivat	ive of cos x
 (1) 2 (2) 1 (3) 3 (4) 4 58. In a linear programming problem the number of minimum (or maximum) points attained by an objet function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2 		(3) derivative	of cos x	(4) None of these	
 58. In a linear programming problem the number of minimum (or maximum) points attained by an object function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2 	57.	Let P(n): x ^{2a} −y	2a is divisible by $x + y$. The sr	nallest natural number n f	or which P(n) is true is
function can be (1) 2 (2) more than 1 (3) only 1 (4) only 2 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2		(1) 2	(2) 1	(3) 3	(4) 4
 59. The slope of a line which passes through the origin and the mid-point of the line segment joining point P(0, -6) and Q(6,0) is (1) I (2) -1 (3) 0 (4) 1/2 	58,			r of minimum (or maxim	am) points attained by an objective
point P(0, -6) and Q(6,0) is (1) 1 (2) -1 (3) 0 (4) 1/2		(1) 2	(2) more than I	(3) only 1	(4) only 2
	59.			ne origin and the mid-poi	int of the line segment joining th
43/A/2K14/05 (7)		(1) 1	(2) -1	(3) 0	(4) 1/2
	43//	V2K14/05		(7)	

60.	k a 2 a 3	b ₁ b ₂ b ₃	c ₁ c ₂ c ₃		where k is a constant. Which of the following is not the correct value
-----	--------------	--	--	--	--

ka₁ kb₁ kc₁ (1) ka2 kb2 kc2 ka3 kb3 kc3

(3) | a₁ | kb₁ | c₁ | a₂ | kb₂ | c₂ | a₃ | kb₃ | c₃ |

- (4) $\begin{vmatrix} a_1 & b_1 & c_1 \\ ka_2 & kb_2 & kc_2 \\ a_3 & b_3 & c_1 \end{vmatrix}$
- 61. The principal value of $tan^{-1}(-\sqrt{3})$ is
- $(2) \frac{\pi}{3}$
- (3) $\frac{2\pi}{3}$
- $(4) \frac{2\pi}{3}$

62. If the function f defined by
$$f(x) = \begin{cases} ax+2 & \text{if } x \le 4 \\ bx+3 & \text{if } x > 4 \end{cases}$$

is continuous at x = 4, then the relation between 'a' and 'b' is

- (2) $a + b = \frac{1}{4}$
- (3) $a b = \frac{1}{4}$
- (4) $a = \frac{1}{4} b$

63.
$$\int \frac{1}{\sin^2 x \cos^2 x} dx$$
 is equal to

- (1) tanx-cotx+c (2) tanx+cotx+c

- (3) $(\tan x + \cot x)^2 + c$ (4) $\tan^2 x + \cot^2 x + c$
- 64. Let P(n):(41)"-(14)" is a multiple of k, be true for all n∈ N, the value of k is ____

- Let A be a square matrix of order 3×3, then lk²Al is equal to where [A] → determinant of A].
 - (1) k | Al
- (2) klAl

- (3) k⁶IAI
- (4) 2klAl

- 66. It is true that $\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}x$ for
 - (1) $x \le 1$ or $x \ge -1$ (2) $x \ge 0$ or $x \le 1$
- (3) $x \ge 1 \text{ or } x \le -1$
- (4) x > 0

- The function sec (tan √x) has derivative -
 - (1) sec(sec²√x)

(2) sec² (sec√x)

(3) $\frac{\sec(\tan\sqrt{x})}{2\sqrt{x}}$

(4) $\frac{\sec(\tan \sqrt{x})\tan(\tan \sqrt{x})\sec^2(\sqrt{x})}{2\sqrt{x}}$

68.	The corner points $(3,0)$. Let $z = px$ $(1,1)$ is	of the feasible region de +qy where p,q>0. Condit	ermined by the system of li ion on p and q so that the	near constraints are (0,3) (1,1) and minimum of z occurs at (3,0) and
	(1) $p = 3q$	(2) $q = 3p$	(3) $p = q$	(4) $p = q/2$
69.	Probability that A actually there was		in is tossed. A reports that a	head appears. The probability tha
	(1) $\frac{1}{2}$	(2) $\frac{1}{5}$	(3) $\frac{2}{5}$	(4) $\frac{4}{5}$
70.		parallelogram ABCD lies e equation of AB is	along the x-axis. The perpo	endicular distance between AB and
	(1) $x+y=4$	(2) x=4	(3) y=4	(4) x=y+4
71.	$3 \sin^{-1} x = \sin^{-1} \dots$	for $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$		
	(1) $4x - 3x^3$	(2) $3x^3 - 4x$	(3) $3-4x^3$	(4) $3x - 4x^3$
72.	For $y=\tan^{-1}\left(\frac{3x}{1-x}\right)$	$\left(\frac{x-x^3}{-3x^2}\right); \frac{1}{\sqrt{3}} \le x < \frac{1}{\sqrt{3}}; \frac{dy}{dx}$	s equal to	
	(1) $\frac{3}{1+x^2}$	(2) $\frac{3}{1-3x^2}$	(3) $\frac{1}{1+x^3}$	$(4) \ \frac{1-3x^2}{3x-x^3}$
73.	"If P(n): 49" + 16	" + k is divisible by 64 for	all n∈ N" is true then the le	ast integral value of k is
	(1) -1	(2) -2	(3) -3	(4) -5
74.	The feasible region	on for LPP is always a		
	(1) convex polys	(3012)	(2) concave polygo	on
	(3) quadrilateral		(4) hexagon	
75.	The mean of the 5 on one face is	numbers obtained on thro	wing a die having written I	on three faces, 2 on two faces and
	(1) 2	(2) 1	(3) 1/3	(4) 5
76.	If three points (h,	o), (a,b) and (o,k) lie on a	line, then	
	$(1) \frac{\mathbf{a}}{\mathbf{k}} + \frac{\mathbf{b}}{\mathbf{h}} = 1$		$(2) \frac{a}{h} + \frac{b}{k} = -1$	
	(3) ak+bh=1		$(4) \frac{a}{h} + \frac{b}{k} = 1$	
43//	A/2K14/05		(9)	

(1) $\frac{1}{\cos x}$	(2	2) cosx		(3)	sin x-x cos cosx.sin ²	<u>x</u> (4	4) <u>x sin x -</u> sin ²	x
Which of th	ne following i	s the cond	itional p ⇒ q	?				
	ecessary con				is a necess	ary condition	for p.	
(3) - p ⇒			45	(4) 0	only if p	38		
				537				
-	ariable X ha	s the follow				1 6	1 6	7
X	0	1	2	3	4	5 K ²	6 2K ²	7K2+K
P(X)	0	K	2K	2K	3K	K.	210	/K +P
Value of K (1) -1		2) 1/10		(3) (,	6	4) 1	
(1) -1		.) 1110		(3)		5.	56.5	
Equation of	a line with s	lope 1/3 ar	nd passing th	rough (-3	3,2) is			
(1) x-3y+9		2) x+3y -	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]		(−3y=0	(4	4) 3x+y-5	9=0
					251057010		ne nem	
Which of th	nese matrices	are singul	ar?					
[4 3	1	[3 2]		T	3 2 4 6		[3 4]	
(1) 2 6	(3	0 6 4		(3)	1 6	64	$\begin{pmatrix} 3 & 4 \\ 2 & 6 \end{pmatrix}$	
If sin (sin	$-1\frac{1}{5} + \cos^{-1}x$	=1, then	the value of	x is				
	70	5) (4)			π			
(1) $\frac{1}{2}$	(2	2) -		(3)	-	(-	4) 1	
2	(97	5		100	2		CEC S	
A die is the successes is		North Cale	ng an odd ni					ng at me
23	100	$\frac{23}{64}$		(3)	63		63	
(1) $\frac{23}{32}$	(3	64		(3)	64	(4	4) $\frac{63}{32}$	
If the line	$\frac{x}{a} + \frac{y}{b} = 1$ pa	sses throu	gh (2,-3) and	(4,-5) th	nen a+b is _			
(1) -1	(2	2) -2		(3) 1		(4	1) 2	
If M_{ij} is the	minor of the	element a,	, then in the	matrix [$\begin{bmatrix} 2 & -4 \\ 0 & 3 \end{bmatrix}$, N	I ₁₁ +M ₂₂ is	_	
(1) 0	(2	2) 2		(3) 5	i	(4	1) 1	
/2K14/05			(16	0)				
					4569			

- 86. If $y = \log\left(x + \sqrt{a^2 + x^2}\right)$, then $\frac{dy}{dx} =$
 - (1) $(a^2+x^2)^{-1/2}$ (2) $\frac{1}{a^2+x^2}$
- (3) $\frac{x}{\sqrt{x^2+x^2}}$
- (4) $1+\sqrt{a^2+x^2}$
- 87. An example of a statement P(n) which is true for all n>4 but P(1), P(2) and P(3) are not true is
 - (1) n²< 2ⁿ
- (2) 2n < n
- (3) $n^3 n$ is divisible by 6 (4) $2n + 1 < 2^n$

88. For the following probability distribution

X	1	2	3	4
P(X)	1/10	1/5	3/10	2/5

The variance is

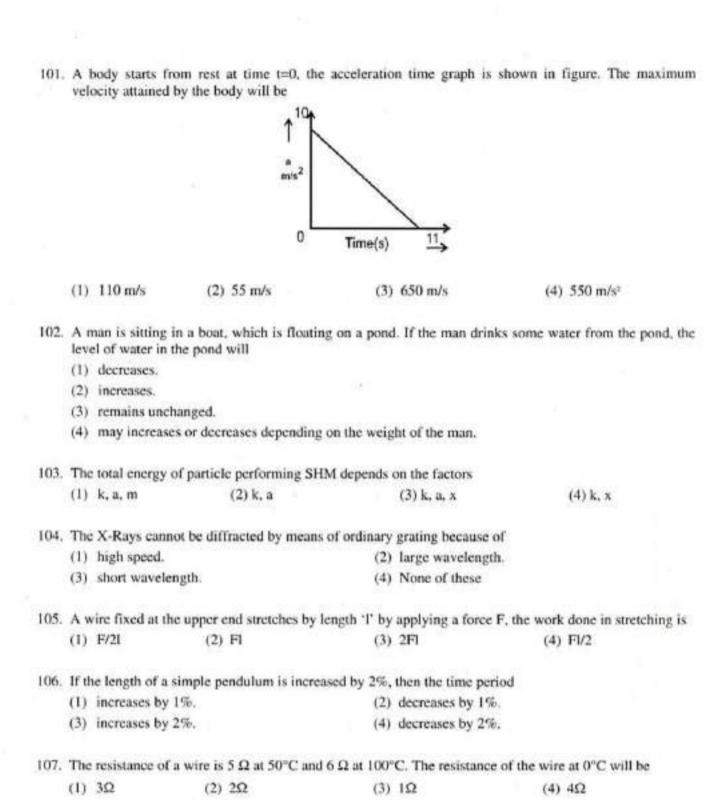
- (1) 6
- (2) 10

 $(3) \ 3$

(4) 1

- 89. If $A = \begin{bmatrix} 1 & \lambda & -2 \\ 0 & 2 & 3 \\ 1 & -1 & 4 \end{bmatrix}$ then A^{-1} exists if
 - (1) $\lambda = -2$
- (3) \u03bb ≠2

(4) None of these


- 90. Which one is not a requirement of a binomial distribution?
 - (1) The outcomes must be dependent on each other
 - (2) There is a fixed number of trials
 - (3) There are 2 outcomes for each trial
 - (4) The probability of success must be the same for all the trials.
- 91. Let x + y + z = 6, y + 3z = 11, x 2y + z = 0 be the system of equations for which

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

This can be written as

- (1) AX = B
- (2) AB = X
- (3) XB = A
- (4) A = BX

2. The	e value of 'c' in Me	ean value theorem for t	he function	$f(x) = x(x-2) \text{ for } x \in [1]$.2] is
(1)	3	(2) $\frac{1}{2}$	(3)	$-\frac{3}{2}$	(4) $\frac{3}{2}$
		7		7	
3. In (order to show that	$\sqrt{7}$ is irrational by me	ethod of co	ontradiction we assume	that
(1)	√7 is not irration	nal	17.7	$\sqrt{7}$ is real	
(3)	7 is not irrational		(4)	$\sqrt{7}$ is not rational	
4. The	e distance between	the parallel lines 4x-3	y+5=0 and	14x-3y-2=0 is	
	7 5	(2) $\frac{21}{5}$	(3)	2	(4) 6
(1)	5	(2) 5	(3)	5	(4) 5
5. If /	A and B are invertil	ble matrices then which	n of the fol	llowing is not correct?	
	$det(A^{-1}) = (det A$			$(A-B)^{-1} = B^{-1} - A^{-1}$	
	$(AB)^{-1} = B^{-1}A^{-1}$		0.75 (0.75)	adj $A = IAI A^{-1}$	
6. J	$\frac{dx}{4+9x^2}$ equals				
	20,0000			9	
700	$\frac{\pi}{4}$	(2) $\frac{\pi}{24}$	(2)	$\frac{\pi}{6}$	$(4) \frac{\pi}{12}$
(1)	4	(2) 24	(3)	6	(4) 12
7. If I	$10^n + 3.4^{n+2} + k$ is d	livisible by 9 for all n∈	N, then th	e least positive integral	value of k is
(1)		(2) 3	(3)		(4) 1
8. If s	$\sin^{-1} x = y$ then				
	0 < y < π	$(2) \ -\frac{\pi}{2} \le y \le \frac{\pi}{2}$	(3)	$-\frac{\pi}{2} < y < \frac{\pi}{2}$	(4) -1 <y<1< td=""></y<1<>
η. 9. ∫	$\frac{\sqrt{Sinx}}{\sqrt{Sinx} + \sqrt{Cosx}}$	dx equals			
	π			π	
(1)	$\frac{\pi}{2}$	(2) π	(3)	$\frac{\pi}{4}$	(4) 0
00. W	nich of the followin	ng is neither a contrapo	sitive, con	verse or a contradiction	?
	(p⇒q) iff (-q⇒-p			(p⇒q) then (q⇒p)	
	porq			To show p is true prove	that -p is false
3/A/2K			(12)		
			1000		

108. A circuit has resistance of 12Ω and an impedance of 15Ω . The power factor of the circuit will be

(13)

(3) 1.25

(2) 0.4

(1) 0.8

43/A/2K14/05

(4) 0.125

109.	The	motion of a part	ticle is	described by the	equation u	a = at. The distance	travelled	by particle in first 4
	(1)	4a	(2)	12a	(3)	6a	(4)	8a
110.						while the diameter ced in the wire by a		I wire is two times thame load will be
	(1)	1:1	(2)	2:1	(3)	1:2	(4)	4:1
111.	If a	wire is stretched	to mai	te it 0.1% longer,	its resistar	nce will		
	(1)	increase by 0.05	%.		(2)	increase by 0.2%.		
	(3)	decrease by 0.29	%.		(4)	decrease by 0.05%	6	
112.	An	electron is movin	g in a	region of electric	field and r	nagnetic field, it wi	II gain en	ergy from
	(1)	electric field.			(2)	magnetic field.		
	(3)	Both (1) & (2)			(4)	None of these		
113.	An	electric bulb is ra	ted 22	0V - 100W, The p	ower cons	sumed by it, when o	operated o	n 110 volt, will be
		25 W		50 W		75 W		40 W
114.	Wh	ich graph pertain	s to un	iform acceleration	1?			
		s†	9	•		' ↑	5	1
	(1)		(2)	$\overline{}$	(3)		(4)	
115.	A st	tretched rubber ha	as					
	(1)	increased K.E.			(2)	increased P.E.		
	(3)	decreased K.E.			(4)	decreased P.E.		
116.	Dur	ing the phenome	non of	resonance				
	(1)	the amplitude of	oscilla	ition becomes larg	ge.			
	(2)	the frequency of	oscilla	ition becomes larg	je.			
	(3)	the time period of	of oscil	lation becomes la	rge.			
	(4)	All these						
117.				nain current is pa shunt resistance,		ough the galvanon	neter. If	the resistance of th
	(1)	9 G	(2)	3/9	(3)	90G	(4)	G/90
118.	Wha	at is de-Broglie w	avelen	gth of an electron	having en	ergy 10 keV?		
		0.12Å	(2)	The state of the s		12.2Â	(4)	0.012Å
43/A	/2K1	4/05			(14)			

119.	As	imple pendulum	is vibrating in an evacuate	ed chamb	er, it will oscillate v	vith			
	(1)	constant amplitu	ide.	(2)	increasing amplitud	le.			
	(3)	decreasing amp	litude.	(4)	None of these				
120.	- DV- 7		periment, the balancing v balancing length become			m. On shunting the cell with ance of the cell is			
	(1)	1Ω	(2) 0.5Ω	(3)	4Ω	(4) 2Ω			
121.	If a	current is passed	through a spring, then th	e spring v	vill -				
	(1)	expand.	(2) compress.	(3)	remain same.	(4) None of these			
122.	The	core of transform	ner is laminated to						
	(I)	prevent it from	moisture.	(2)	prevent it from noi	se.			
	(3)	prevent it from l	heat.	(4)	reduce the loss of e	energy.			
123.	If th	here were no grav	ity, which of the following	ng will no	t be there for a liqui	d?			
	(1)	Viscosity		(2)	Surface tension				
	(3)	Pressure		(4)	Archimedes upwar	d thrust			
124.	A beam of electrons and protons moves parallel to each other in the same direction then they								
	(1)	attract each other	r.	(2)	repel each other.				
	(3)	neither attract ne	or repel.	(4)	None of these				
125.	То	manufacture the	core of a transformer, the	best mate	erial is				
	(1)	stainless steel	(2) hard steel	(3)	mild steel	(4) soft iron			
126.	The	speed of an elec	tron having a wavelength	of 10 ⁻¹⁰ n	n is				
	(1)	7.25 × 10 ⁶ m/s	(2) 6.26×10^6 m/s	(3)	5.25 × 106 m/s	(4) 4.24×10^6 m/s			
127.	Wh	ich of the followi	ng curves does not repres	ents moti	on in one dimension	1?			
		v 1	* ↑		^ ↑)	Ť			
		\wedge				\wedge			
	(1)	t	(2) t		(3)	(4)			
128.	The	ratio of the term	inal velocities of two drop	ps of radii	R and R/2 is				
	(I)	2	(2) 1	(3)	1/2	(4) 4			

(15)

129.		orce acting on a c gnetic field of 1.5	conductor of length 5 m c T is	arrying	a current of 8 ampere	is kept perpendicular to
	(1)	100 N	(2) 60 N	(3)	50 N	(4) 75 N
130.	Do	main formation is	the necessary feature of			
	(1)	diamagnetism.	(2) paramagnetism.	(3)	ferromagnatisn.	(4) All these
131.	Vel	ocity of a body or	n reaching the point from	which it	was projected upwards	is is
	(1)	v = 0	(2) $v = 0.5 u$	(3)	v = 2u	(4) $v = u$
132.	Sce	nt sprayer is base	d on			
	(1)	Charles law.		(2)	Boyle's law.	
	(3)	Archimedes' pri	nciple.	(4)	Bernoulli's theorem.	
133.	Ап	nagnetic needle is	kept in a non-uniform ma	ignetic f	ield. It experiences	
	(1)	a torque but not	a force.	(2)	neither a force nor a to	orque.
	(3)	a force and a tor	que.	(4)	a force but not a torqu	e.
134.	Wh	en a plane electro	magnetic wave enters a gl	lass slab	, then which of the foll	owing will not change?
	(1)	Wave length	(2) Frequency	(3)	Speed	(4) Amplitude
135.	If a	ball is thrown ver	rtically upwards with 40 n	n/s its ve	elocity after two second	ls will be
	(1)	10 m/s.	(2) 30 m/s.	(3)	20 m/s.	(4) 40 m/s.
136.	The	quantity which d	loes not change, when sou	nd enter	s from one medium to	another is
	(1)	wave-length.	(2) speed.	(3)	frequency.	(4) None of these
137.	For	a real object, whi	ch of the following can pr	oduce a	real image?	
	(1)	Plane mirror	(2) Concave lens	(3)	Convex mirror	(4) Concave mirror
138.	Pen	etrating power is	minimum for			
	(1)	α-rays	(2) γ-rays	(3)	β-rays	(4) x-rays
139.	Lin	e spectrum can be	obtained from			
	(1)	Sun.		(2)	Candle.	
	(3)	Mercury vapour	lamp .	(4)	Electric bulb.	
140.	Sola	ar energy is due to)			
	(1)	fusion reaction.	(2) fission reaction.	(3)	combustion reaction.	(4) None of these
42/4	nvi	1/06		65		

141. A particle is acted upon by a force of constant magnitude which is always perpendicular to the vel the particle. The motion of the particle takes place in a plane. It follows that							
	(1)	its velocity is	constant.	(2)	its acceleration is	constant.	
	(3)	its K.E. is con	stant.	(4)	it moves in a strai	ight line.	
142	The	e waves produc	ed by a motor boat sailing	in deep w	ater is		
8302		transverse.			longitudinal.		
	10000	longitudinal a	nd transverse.	22.00	stationary.		
143.	One	e milligram of r	matter converted into ener	gy will giv	e		
		91	(2) $9 \times 10^3 \text{J}$	44.000	$9\times10^5\mathrm{J}$	(4) $9 \times 10^{10} \text{J}$	
144.	Din	nensions of imp	oulse are the same as that	of			
	(1)	force	(2) momentum	(3)	energy	(4) acceleration	
145.	Ap	erson cannot cl	early see distances more t	han 40 cm	. He is advised to t	use lens of power	
	(1)	-2.5 D	(2) 2.5 D	(3)	-6.25 D	(4) 1.5 D	
146.	Sup	pose the numb	er of turns in a coil be trip	led the val	ue of magnetic flu	x linked with it	
	(1)	remains uncha	inged.	(2)	becomes 1/3.		
	(3)	is tripled.		(4)	None of these		
147.	Wh	ich one of the f	ollowing phenomena is no	ot explaine	d by Huygens' con	struction of wave front?	
	(1)	Refraction		(2)	Reflection		
	(3)	Diffraction		(4)	Origin of spectra		
148.	Мо	mentum is clos	ely related to				
	(1)	force.		(2)	impulse.		
	(3)	velocity.		(4)	K.E.		
149.	Wh	ich of the follo	wing wave does not carry	energy?			
	(1)	Stationary		(2)	Progressive		
	(3)	Transverse		(4)	Electromagnetic		
150.	Αp	erson is sitting	in a lift accelerating upwa	ırds measu	red weight of perso	on will be	
	(1)	less than actua	d weight.	(2)	equal to actual we	ight.	
	(3)	more than actu	al weight.	(4)	zero.		
43/A	/2K1	14/05		(17)			

Directions (Questions 151-160): Study the passages below and answer the questions that follow each passage.

Passage I

The slope of the land, climatic condition, quality and thickness of the soil cover, the nature of rocks and minerals, the availability of water help in deciding the land use in the particular area. Moreover, the lifestyle of the people, the location of a place and its accessibility with other regions also affects land use. It can also be modified by construction of new roads and railways in a particular area. For example, in the Prairies of North-America, construction of roads and railways led to the development of extensive cultivation of food crops. In some areas people have encroached upon community lands and are misusing it. The total amount of land available on the earth's surface is limited. However, the number of people and the demands are increasing. Thus, to get maximum benefits from land, we should prepare a plan for land use.

151.	What	led to	the	extensive	cultivation	of	food	crops?
------	------	--------	-----	-----------	-------------	----	------	--------

(1) Construction

(2) Environment

(3) Community

(4) Thickness of soil

152. Which among the following is not the deciding factor for land use in a particular area?

(1) Climatic condition

(2) Thickness of soil

(3) Lifestyle of people

(4) Availability of water

153. What additional aspects help substantiate the decision taken on natural factors?

(1) Location

(2) Construction of roads

(3) Lifestyle of people

(4) All these

154. How can the land use in a particular area be changed?

(1) Cultivation

(2) Construction

(3) Preparing plan

(4) None of these

155. What is limited as per the paragraph?

(1) Land

(2) Climatic condition

(3) Construction

(4) Availability of water

Passage II

An apple a day needn't always keep the doctor away. According to the survey, both apples and oranges were found to have banned pesticide levels 140% above permissible limits. The fruits are waxed with chemicals and pesticides to give them a longer life. Vegetables like cabbage and cauliflower, which are supposed to be very important for women's health, are dipped in two to three levels of pesticides to keep them fresh. Farming techniques like crop rotation have become a thing of the past", said Hema, a nutrition adviser. The solution lies in cleaning them thoroughly and buying from small vendors rather than supermarkets. Small vendors grow vegetables and fruit on a small scale and are not well-versed with the use of chemicals. Smaller the vegetable is in size, more organic it is. Kitchen gardening is the best solution to keep pesticides at bay. Vegetables can be grown easily in pots even if you live in an apartment.

156.	Wh	y should we pure	hase vegetables from small	vendors?	
	(1)	They sell at low	er price than supermarkets.	(2) They grow it o	n a small scale.
	(3)	They are less ed	sucated to use chemicals.	(4) Both (2) and (3	5).
157.	Wh	at is kitchen gard	lening?		
	(1)	Washing the ver	getables several times.		
	(2)	Keeping pestici	des away while growing ve	getables.	
		J. 10 55 250	oles in at home and even po	its.	
	(4)	Soak vegetables	in salt water.		
158.	Wh	at is done to incr	ease the life of vegetables?		
	(1)	Use of pesticide	8.	(2) Washing of ve	getables several times.
	(3)	Keep vegetable	s in refrigerator.	(4) Use crop rotati	on,
159.			thing of the past?		
	(1)	Use of pesticide	s (2) Gardening	(3) Crop rotation	(4) Small vendors
160.	Wh	ich out of the fol	lowing is the most appropri	ate solution?	
	(1)	Kitchen gardeni	ng.	(2) Purchasing fro	m small vendor.
	(3)	Crop rotation.		(4) Purchasing of	small vegetables.
		ns (Questions 16 tence.	1-164): Choose the word	which best expresses th	he meaning of the underlined wo
161.	She	has an <u>insatiable</u>	love for music.		X 11
	(1)	undesirable	(2) unchanging	(3) irreconcilable	(4) unsatisfiable
162.	Scie	ence has revealed	the mysteries of nature to	man,	
	(1)	released	(2) disclosed	(3) opened	(4) cleared
163.	He	would have been	his close associate had he i	not been disloyal.	
	(1)	employee	(2) competitor	(3) colleague	(4) executive
164.	Cat	ching snakes can	be hazardous for people un	trained in the art.	
		dangerous	(2) difficult	(3) harmful	(4) tricky
		ns (Questions 1 d word in the ser		d which is closest to	the opposite in meaning of t
165.	We	must realise the	futility of wars.	10	
	(1)	urgency	(2) value	(3) usefulness	(4) importance
	inte	100	744	20	

100	Cici	nume drugs are a	vailable in most of the me	edical sho	ps.	
	(1)	harmful	(2) wrong	(3)	dubious	(4) spurious
167.	He	was asked to acc	elerate the pace of work.			
	(1)	check	(2) control	(3)	slacken	(4) supervise
168.	Eve	eryone could see	that it was a prejudiced d	ecision.		
	(1)	unbiased	(2) candid	(3)	helpful	(4) logical
		ns (Questions 16 ch sentence.	59-172): Fill in the blan	ks by cho	osing an appropri	iate word from the words give
169.	A/A	An is a pe	rson who slips unnoticed	into a pla	ne or ship to trave	I secretly.
	(1)	emigrant	(2) immigrant	(3)	stowaway	(4) deserter
170.	Ap	erson who writes	regularly for a newspape	er or a ma	gazine is called a/a	ın,
	(1)	copywriter	(2) columnist	(3)	editor	(4) author
171.	A/A	n is a per-	son who believes that Go	d does no	t exist.	
	(1)	atheist	(2) ascetic	(3)	evangelist	(4) protestant
172.	Α_	is involved	with the study of earthqu	akes.		
	(1)	meteorologist	(2) geologist	(3)	cosmologist	(4) seismologist
		ns (Questions 1' rase in the senten		tion whic	h best expresses	the meaning of the underline
173.		marketing man	ager advised his salesm	en to be	above board in	their dealing with prospective
	(1)	to be aggressive		(2)	to conceal facts	
	(3)	to be knowledge	able	(4)	totally honest with	nout any secrecy
174.			esh for helping him finan	cially and	not leaving him in	n the lurch.
	0.0250	to leave one in d			to be supportive	
	(3)	to compromise of	one's position	(4)	to make fun of	
175.			yone's mind is whether S	achin Ter	ndulkar's son will t	be a chip of the old block.
		Perform badly		0.000000	be casual and not t	
	(3)	be a worthy son	of his worthy father	(4)	take life as it come	es -
176,	The	judge recused his	mself from hearing the ca	ise as he f	elt he had an axe to	o grind in the matter.
		nothing to do wi			a private/personal	
	(3)	not suitably qual	ified to deal with	(4)	inadequate time to	take on
12/4	mv i	*WYC		201		

177.	Stor	ry					
	(1)	Storys	(2)	Story	(3)	Stories	(4) Storis
178.	Thi	ef					
	(1)	Theives	(2)	Thieves	(3)	Thiefes	(4) Thiefs
179.	Seri	ies					
	(1)	Series	(2)	Seriei	(3)	Seriess	(4) Seried
180.	Mai	ngo					
	(1)	Mangose	(2)	Mango's	(3)	Mangoes	(4) Mango
181.	Wh		owir	g companies has	setup an el	ection portal in l	ndia, the largest democracy of th
	(1)	Wikipedia	(2)	Yahoo	(3)	WhatsApp	(4) Google
182.	Wh	ich among the fol	lowir	ng is the India's la	rgest passe	nger carrier airlir	ne in the domestic circuit?
	(1)	IndiGo	(2)	Jet Airways	(3)	Go Air	(4) Spice Jet
183.		ich is the first Inc k in terms of reta			sumer Goo	ds (FMCG) bran	d that crossed 5000 crore Rupec
	(1)	Britannia Tiger	(2)	ITC Sun feast	(3)	Maggi	(4) Parle G
184.	Wh	ich one of the foll	owin	g banks has launc	hed Kisan	Card to provide c	rop loan through ATMs?
	(1)	State Bank	(2)	HDFC Bank	(3)	Axis Bank	(4) Canara Bank
185.	Wh	o among the follo	wing	is the youngest M	lember of I	Parliament in Indi	ia?
	(1)	Hamdullah Saye	ed		(2)	Agatha Sangma	
	(3)	Ramya			(4)	Dimple Yadav	
186.		ich are the first tw 4 for ongoing Lok			issued pla	stic Electors Pho	to Identity Card (EPIC) in Marc
	(1)	Punjab and Hary	ana		(2)	Kerala and Tam	il Nadu
	(3)	Nagaland and As	sam		(4)	West Bengal and	1 Odisha
187.		on Ministry of Co 3 which came into				more cha	pters in the new Companies Act
	(1)	six	(2)	eight	(3)	nine	(4) ten
43/A	/2K1	4/05		000 FE20118	(21)		-115-0012-50-00

Directions (Questions 177-180): Choose the option that is the plural form of the given word.

188.	Name the second Indian Regional Navigation Satellite System (IRNSS) launched by the Indian Spac Research Organization in April 2014?								
	(1)	IRNSS-2A	(2) IRNSS-1B	(3)	IRNSS-A2	(4) IRNSS-B2			
189.	Wh	ich multination	al retail company rec	cently launched	its business in Inc	lia?			
	(1)	Carrefour	(2) Amazon	(3)	Wal-Mart	(4) Tesco			
190.	Wh	o among the fol	lowing is the curren	t President of th	e World Bank?				
	(1)	Sir James Wol	fensohn.	(2)	Paul Wolfowitz.				
	(3)	Jim Yong Kim	ls.	(4)	Robert Zoellick.				
191.			ropean Parliament I entinent of Europe?	nas voted to dev	elop which comn	non device for all mobile phone			
	(1)	Head Phone	(2) Battery	(3)	Charger	(4) None of these			
192.	Wh 201		llowing sports pers	on has become	the brand ambas	sador of Canara Bank in Marc			
	(1)	Deepika Kuma	ıri	(2)	Sushil Kumar				
	(3)	Shikhar Dhawa	an	(4)	Viswanathan An	and			
193.	The	Third Nuclear	Security Summit wa	s held from 24	to 25 March 2014	at			
	(1)	Seoul.	(2) Hague.	(3)	Washington,	(4) Paris.			
194.		ich one of the frat Airport?	ollowing countries	has agreed to de	evelop the biggest	cargo airport in Afghanistan o			
	(1)	UK	(2) USA	(3)	Italy	(4) France			
195.			dy Michelle Obama, Barack Obama?	visited which o	of the following co	ountries ahead of the official vis			
	(1)	South Korea	(2) Japan	(3)	China	(4) Taiwan			
196.			the following finar dia to set up a Bank		(ies) was/were gr	anted principle approval by th			
	(1)	Bandhan Finan	icial Services	(2)	IDFC				
	(3)	Both (1) & (2)		(4)	None of these				
197.			internet hackers s astomers of which o			oit card numbers and persona			
	(1)	Amaxon	(2) Target	(3)	Walmart	(4) Super Markets			
4274	nu	LLINE		100					
+3/A	/2K	14/05		(22)					

198.	Asian cou		n Development Bank (ADB	s) h	as always been	from v	which of the	tollowing
	(1) China	a (2)	Japan (3) S	South Korea	(4	4) India	
199.	ICC Won	nen's World Two	enty20 2014 was held in wh	iich	of the following c	ountrie	s?	100
	(1) Pakis	stan (2)	Sri Lanka (3	3) E	Bangladesh	(4	4) India	
200.	The XXII	Olympic Winte	r Games were held in which	h co	untry?			
	(1) Norw	ay (2)	Canada (3	3) F	Russia	(4	4) Iceland	