21. For a chemical reaction

$$A + B \rightarrow C$$

the following data are found

Initial rate	Initial conc	Initial conc of B (mol l-1)	
(mol l-1s-1)	of A (mol l-1)		
0.02	0.5	0.5	
0.08	1.0	0.5 000	
0.16	1.0	1.0	

Find the correct rate expression from the code given below:

$$(A)$$
 $k[A]^2[B]$

- (B) $k[A][B]^2$
- (C) k[A][B]
- (D) $k[A]^2$
- one lebelled as Assertion (Ass) and the other as Reason (R). Examine them and select your answer from the codes given below:
 - Assertion (Ass): Bonding between soft acids and soft bases is predominantly covalent.
 - Reason (R): The low oxidation states, larger sizes and easy polarizability of soft acids favour ∏-bonding with soft bases.

Codes:

- (A) Both (Ass) and (R) are true and (R) is the correct explanation of (Ass)
- (B) Both (Ass) and (R) are true but (R) is not the correct explanation of (Ass)
- (C) (Ass) is true but (R) is wrong
- (D) (Ass) is wrong but (R) is true

23. Match the entries in Column-I with those in Column-II and find the correct match using the codes given below:

(a) Copper acetate (b) Tetrasulphur tetranitride (c) Sulphur (cyclo) Column-II 2. Polymeric 2. Crown shaped 3. Dimeric

(d) Beryllium 4. Cradle shaped 4. Cradle shaped 5.

Codes:	(a)	(b)	(c)	(d)	1
(A)	1	2	3	4	X
(B)	4	.3	2	1	
(C)	3 -	2	4	1 /	
LIDY	3	4	2	1/	

- The species exhibiting the lowest carbonyl stretching frequency $\left(v_{c-0}\,cm^{-1}\right)$ is
 - (A) $[(C_5H_5)Fe(CO)_3]^+$
 - (B) $[(C_5H_5)V(CO)_3]^{2^-}$
 - (C) $[(C_5H_5)Cr(CO)_3]^{-1}$
 - (D) $[(C_5H_5)Mn(CO)_3]^0$

Paper-II / CHEMSC

PTA

25. Given below are two statements, one labelled as Assertion (Ass) and the other as Reason (R). Pick out the correct conclusion from the codes given below:

Assertion (Ass):

2-Chlorotoluene on treatment with sodamide gives a mixture of ortho and meta toluidines.

$$\underbrace{\bigcirc Cl}_{CH_3} \xrightarrow{NH_2} \underbrace{\bigcirc NH_2}_{CH_3} + \underbrace{\bigcirc CH}_3$$

Reason (R): Chloro arenes on treatment with strong base form aryne as a reactive intermediate. A nucleophilic addition to aryne gives the final product.

Codes :

- (A) Both (Ass) and (R) are wrong
- (B) (Ass) is correct but (R) is wrong
- (C) (Ass) is wrong but (R) is correct

ASSESSED BUTTON

(D) Both (Ass) and (R) are correct

- 26. Some of the following statements are correct and others are wrong. Read them carefully and pick out the correct answer from the codes given below:
 - (1) [4+2] cyclo addition reactions are 100p.c. atom efficient reactions.
 - (2) Meerwein-Pondorf-Verley reduction is a chemoselective reaction for reducing esters R COOR to alcholols R CH₂OH.
 - (3) Wohl-Ziegler reaction performs allylic bromination
 - (4) Hofmann bromide reaction is an example of intramoleculer cationotropic 1,2-shift

Codes: (1) (2) (3) (4)

Equad shar hav

- (A) True True False False
- (B) True False True False
- (C) False False True False
- (D) True True True False

27. Match each of the items given in List I with those given in List II and find the correct answer from the codes given below:

List-I

List-II

- (1) Odd carbon alkanes
- (i) Wittig reaction
- (2) Oxidation of a 2°-alcohol to Ketone
- (ii) Knoevenagel's reaction
- (3) Conversion of a Ketone to an alkene
- (iii) Oppenomer's oxidation

(3)

- (4) Synthesis of (iv) Corey-Honse $\alpha\beta$ -unsaturated synthesis carboxylic acids
 - Codes: (2)(1)(iii) (iv)
 - (ii) (i),

(iv)

- (iii) (B)
- (ii) ' (i) ·

(4)

(i)

- (iv) (C)
- (iii) (ii)
- (ii) (D)
- (i) (iv) (iii)
- 28. Assertion (Ass): The melting point of ice is much higher than that of H_2S . 自己 2 7 3 1
 - (R) : The lower Reason negativity of S prevents appreciable hydrogen bonding accounting for melting point of H2S than that of ice.

Codes:

(A) Both (Ass) and (R) are false

Telliar

- (B) Both (Ass) and (R) are true and (R) is the correct explanation of (Ass)
 - (C) (Ass) is true but (R) is false
 - (D) (Ass) is false but (R) is true

Paper-II / CHEMSC

29. Match the items in Column-I with those in Column-II and select the correct match using the codes given below:

Column-I		Colu	Column-II	
(a)	$(\partial U/\partial S)_V$	7.	V	
(b)	$(\partial U/\partial V)_S$	2.	- S	
(c)	$(\partial G/\partial P)_T$	3.	T	
(d)	$(\partial G/\partial T)_P$	4.	- P	

where U=Internal Energy; G=free energy; P=pressure; V = volume; T = Temperatureand S=entropy

Codes:	(a)	(b)	(c)	(d)
(A)	2	3	4	1
(B)	3	4	1/	2,
(C)	4	1-4	2	.3
(D)	1	2	3	4

- 30. If the specific rate constant 'K' is to be equal to the preexponential factor 'A' Arrhenius equation, then
 - the reaction temperature is very low
 - (B) the reaction is a catalysed
 - the reaction is molecular (C) in nature
 - DY the reaction does not need any activation energy