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1.  Which of the following statements gives A T |
completeness axiom ? 5. Suppose A = {1’ 3 ™
(A} Every bounded infinite subset of R has a limit 1 | 3
point in R B ={3, E‘....ﬁ-_—r-...}arememtseﬁ:}fth:
(B) Every subsct of R which iz bounded above metric space R with respect 1o wsusl metric d
has supremum thendiA, B)=
(C) Every closed and bounded subsct of R is (A 12
compact (B) 1
(I} Every K-cell is compact Cy} 13
Dy O

sinx , :
real numbers. Thenlim_ and lim _of {s } are: 6. Suppose f(x)=—— if x # 0 and f{x) = 1 ifx = 0.

Ay 1.0 {0~ Then fis :

) 1.—1 MM L1 (A) contimousat 0

(B) discontinuousat 0

() has removable discontinuity at 0

= - I s
3. The series -Z o isa M (Bybutnot{C)

{A) Convergent serics

3

{B) Divergent series

7.  Suppesef (x) - % xrealbn=0,1,2,3....
{C) Conditionally comvergent serics [| ¥ x!)"
(I None " ;
Then the series = :
E{‘l #x°F

4. Supposcabe Rwitha<h. Then[a, biisa;

(A) Countable set (A) COnNVErges point wise

(B) Almosteountable set (B) converges uniformly

(C) Uncountable sel (C) not{A)

(D) Compact setin R (D) not(B)
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Suppose fix) = [x] forall x =[a, b] where 2, b are
real numbers with a < b, Then fis :

(A} Continuous on [a, b]

(B) Uniformly continuous on [a, )

(C) Riemann intograble on[a. b]

(M MNone

Suppose the set {v,. v, .....v, | spans a vecior space
V. Then dimension of Vis :

(A) =n
@) >n
(C) <n
D) <=n

Suppose T is a linear operator on R* defined by
T(x ), x,)=(x, 0). Let  be the standard basis and
B'={{1, 1), (2. 3)} be any basis of R2. Then the
mairix of T relativeto the pair B, 3" is

[ 3]
@ [ 9

a1

3 0]
® | o

3 1
© [-l -3]

(D) None

(3,0.4), (~1,0, 7yand (2,9, 11}in R’ are :
(A} orthogonal

(B) lincarly independent

(C) neither(A) nor(B)

(D) both {A) and (B)

12. The values of A, p for which the following system of

13.

14,

15,

* 3w

simultaneous equations has unique solution -
X+y+tzmb, x+2y+3z2=0; x+ytiz=y
(A} A=3,p=3

(B) A#3,anyp

(C) anyd,p=3

D) anyd,p

If f{t, x) is defined continuous on rectangle
I-'».'.:{{Lx}rjt—tu|£a,|u-}t€]£b}mdiabuundﬂdh}'
LonR and also satisfies Lipschitz condition on R
then the initial value problem x'=ft, x), x(t)=x has
unique solution on the interval I =|t~t | <h where h
15

{A) min [a, EJ

®) min[h ';‘

(©) rﬂl’ﬂ(m%

] E‘I
® ma(b £

The functions x*, | % | %* are linearly independent on
the interval :
(A} [0,1]
(B) [-1,0]
(<€) [1,2]
m [-1,1]

The partial differential equation associated with
ﬂx+y+:].{xi+f-f}h={lisglm by :

(&) (y+z)p-(z+x)g=x-y

(B) (x+y)p+(y+zlg=z—x

(C) (x+y+ z)p—i{x-y-z)q=0

(D) xp +tyg=x+y+z
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16.

18.

19.
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The complete integral of partial differential equanion
7= pxi +qy + p* +g* by Charpit’s method is given
by
(A)
(B)
()

(o)

z=ax+by +a?
z=ax +by+ b
z=ax+ by +a*+ b

z=ax+hy +ab

Secant methad o find a root of an equation :
(A) Converges always

(B) Diverges always

(C) May not converge some times

(D) Mone of these

For large n the Gauss elimination method requires ;

(A) '—;cspr:ratinns
n]

(B) T operations

3

n z
 Opcrations

() 24- operations

(C)

1f [ is the differential operator and E is the shifting
operator then hD is equal to ©

(A) logE

®) logE"

(C) hlogE

M) hlogE"

20.

2L

22,

Which of the following is Volterra integral equation ?

(A) 00x)= [k(x.0(t)dt
(M) fh:l.’ x, ) §(t)dt + F(x) = §(x)

1
(C) #ix)=fx)+ fkll.'xft:l dr

(D) Moneof these

The solution of LE. {x)=x - ]-{.'-: — )t} dt,
& lx)=0: u

(A) e

B) e

(C) sinx

D) <

The extremals of the functional

3
Iy(x)] = fﬁx—}'}l}fdy that satisfies the
|

boundary conditions y{13=1, W3) =92 is:
(A) 1

B3| WD

(B

3
(© y=3%

([} Mo solution
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3. On what curve can the fu nctional| 27, Letx be a random variable with mean p(< =) and
& I variance o(< o0) then fore>0:
I [y(x)]= ]-..1+y"dx attain an extremum 7 pe
o (A) Plpx-pize]l=s 5
(A) Parabola 4
(B) Hyperbola @ Plx-pzelsl-—
(D) None (C) Plx—pze]s 7
24 ":ephwmveufﬂxﬁdpn'nmﬂmﬂmmmm O Plx-pzelsi- o
(A) Circle
(B) Ellpse 28, Themode of F distribution is
(C) Sphere g
(D) Hyperbola ® .23

25, mmbmufgﬂmrﬂm&umﬂmmﬁmqlﬁmdm ® (n-2) m
sp:mﬁﬂwmnﬁgwmnfngtdhnd}'rmmw
=

: nn
{..A.} 3 {C} n, + 2
B) 4

(C) 5 A
{D:I @ {DJ n, +n,

26, ITFP(A)~0.3, P(B)=04,P(C)=0.5, P(AB)=0.2,| 29 If X is a random variable with pdffix)=e™,0<x<
P(BC) = 0.3, P(ABT ) = 0.3 and P(ABC ) = 0.1 oo then the density ofy = X715

then P(B|C )= , Y
_*..3'3'

(A) % () E}rﬂ

1 F
®) 5 (B) -Ije_%r!&

l
icy ¢

5 ©) l c"}';
{0 : *

’ ®
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30.

3l

32,

i

34,
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Stratified sampling belongs to the category of :
(A) Judgement sampling

(B) Subjective sampling

(C) Controlled sampling

(D) Moo Random sampling

The formuala for estimating a missing value in LSD
with orderk is :

(&) RI+C+T) -G A(k-1)k=12)
@ k(R!+Cl+T/ -GAk-D(k=2)
(C) k(R +C\+T)-20G"I(k-1)(k~-2)

D) k(R +C+T,)- kG Ak -1k -2)

In 2 trivariate population, r = 0.%r,= 0b.r.=
0.5 then the multiple comelation R, ,, is:

(A 050

B) 0.57

(C) 0.74

D) 084

Mean source of an estimator T (x) of w(8) is
moiniruen if:

(A) Biasand Var(T (x) ) bothare zero

(B) Bias is zero and Var(T (x))is minimum

(C) Bias is minimum and Yar(T (x])is zero

(D) Bias and Variance both are minimum

The shape of Chi square distribution curve with d.£
lor2is:

(A)
(H)
(<)
()

15,

36.

37.

8.

=W

&

Totest H,: p< i, against m:akemntiw[-[,:u:vué '

H, is rejected at level aif : 1

5

(A) 15u0+?;zt

® xzu,+ 2,
3

() XS, +ﬁ"".'

(D) X2p, + - | S
ﬁ :

Which one of the following tests ismore efficient than
sign test for testing for the Median of a continuous
and symmetric distribution 7

(A) Wilconon signed Rank test

(B) Sukhamme’stest

(C) Mood's test

(D) Wald Wolfowitz test

In acomplete linkage clustering technique, the distance
between two clusters can be measured as :
[A'} d(-'-l w= Miﬂ {d\m" dn';
®) d,,.~Max{d,.d,}
d
{C} dl:-.I ‘= W_‘:-E.""—

d -—-d
O 4= =50

The numbser of primitive 100% roots of unity are :
(A) 40
B) 60
(©) 100
D) 99

|




39. G is a cyclic group of order 101, Then the
awomorphisms group of G has order -
(A) 101
B} 2
(C) 100
o 1

40. LetGbea group, Z(G) its centre and x & Z(G). If
C(x) is the conjugate class of x then order of Cix)
B

(A) Z(G))
3) 1

() o

D) G|

41, Aprime ideal in (Z, +,") among the following is -
! (A) (91)

B) {19}

(© (36)

(D) (63}

42, Consider the ring Z{i] of Gaussian integers. Then
the number of units in Z{i] is :
(A) 1
(B 2
(C) 3
D) 4

43. Thﬂllﬂnhﬂ‘ﬂfrnn-«imrwplﬂtnun-abeliangmm
oforder8 is :
A 4
B) 3
(c) 2
D) 1
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47.

48.

An irreducible polynomial among the following in
Qlx]is:

(A) 2x'+3Ix+ 6

{B) x*-3x%42

C) ¥-x*+x-1

) x*+1

LetK = Q(+/3,1). E=(Q be fields. Then the degree
of KeverEis:

(A) 1

(B} 2

(C) 3

M) 4

Consider the topology J = {4, X, {11, {1,2}} of
subsets of X = {1, 2, 3}. Then a closed set among
the following is:

(A) {1}

® {1,2})

(© {23

D) {3}

lim Z-z-10 _
T-4l1i 2‘1—421-5 5

(A) 66—
B 6+
(C) =6-—d
D) -6+4d

If f(z) = u + v is analytic in a domain with
u==4xy -2y then f{z) =

{A) z+1z

B) h(Z+z)

©) 2(z-2)

) 4z



49, Let Cbe the positively oriented circle |z-2|=1.] 50. Letfiz) =2’ ¢ Then f "4 (() =

201 530
Then ’5[ : S sdz = &)
e (@) 2015%2014x321
(A} 5m (C) 2014x300
im
B D) 2016x2015x324
Em
(C) 5
(M 10m
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