CAT Previous Year Arithmetic \& Geometry Questions (Samples)

Here are a few example questions on arithmetic and geometry from previous years of the Common Admission Test (CAT):

Arithmetic Questions:

1. Percentage

- A man spends 60% of his income. If his income increases by 20% and his expenditure also increases by 10%, what will be the percentage increase in his savings?

2. Profit and Loss

- A shopkeeper marks up his goods by 25% above the cost price and offers a discount of 10% on the marked price. If a customer buys an item for ₹ 360 , what is the cost price of the item?

3. Time, Speed, and Distance

- Two trains start from stations A and B and travel towards each other at speeds of $50 \mathrm{~km} / \mathrm{h}$ and $60 \mathrm{~km} / \mathrm{h}$ respectively. When they meet, it is found that one train has traveled 120 km more than the other. What is the distance between stations A and B ?

4. Work and Time

- A can complete a work in 10 days and B can complete the same work in 15 days. They start working together, but A leaves after 2 days. How many more days will B take to complete the remaining work?

Geometry Questions:

1. Triangles

- In triangle $A B C$, angle B is 90 degrees. If $A B=6 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$, what is the length of AC?

2. Circles

- Two circles of radii 5 cm and 3 cm touch each other externally. What is the distance between their centers?

3. Quadrilaterals

- In a parallelogram $A B C D$, if the angle A is 60 degrees and the side $A B$ is 8 cm , what is the length of the diagonal $A C$?

leverage

edu

4. Mensuration

- A cylinder has a base radius of 7 cm and a height of 14 cm . What is the surface area of the cylinder?

Answers for CAT Previous Year Arithmetic \& Geometry Questions (Samples)

Sure, here are the answers to the questions provided:

Arithmetic Questions:

1. Percentage

- Let the man's initial income be
(II).
- Initial expenditure:
(0.6II)
- Initial savings: $\backslash(0.4 \mathrm{I})$
- New income:
(1.2I)
- New expenditure: $\backslash(1.1$ times $0.61=0.6611)$
- New savings: $\backslash(1.2 \mathrm{I}-0.66 \mathrm{I}=0.54 \mathrm{I})$
- Percentage increase in savings: $\backslash(\mid$ frac\{ $0.54 \mathrm{I}-0.4 \mid\}\{0.4 \mathrm{l}\}$ |times $100=\backslash$ frac $\{0.14 \mathrm{I}\}\{0.4 \mathrm{I}\}$ |times $100=35 \backslash \%)$
2. Profit and Loss
- Let the cost price (CP) be $\backslash(\mathrm{x} \mid)$.
- Marked price (MP) $=\backslash(1.25 x \backslash)$

- Selling price (SP) after 10% discount $=\backslash(0.9 \backslash$ times $1.25 x=1.125 x \backslash)$
- Given $\backslash(1.125 x=360 \backslash)$
- Therefore, $\backslash(x=\backslash \operatorname{frac}\{360\}\{1.125\}=320 \backslash)$

3. Time, Speed, and Distance

- Let the distance traveled by the first train be $\backslash\left(d _11\right)$ and by the second train be $\backslash\left(d _21\right)$.
-
(d_1 = d_2 + 120)
- Since time taken is the same for both trains, $\backslash(\mid$ frac\{d_1\} 100$\}=\backslash$ frac\{d_2\}\{60\}|)
- Substituting $\backslash\left(d _1=d _2+120 \backslash\right)$ in $\backslash\left(\backslash f r a c\left\{d _1\right\}\{50\}=\backslash f r a c\left\{d _2\right\}\{60\} \backslash\right)$:
!
|frac\{d_2 + 120\}\{50\} $=$ |frac\{d_2\}\{60\}
1]
- Solving, $\backslash\left(60\left(d _2+120\right)=50 d _2 \backslash\right)$
- $\backslash\left(60 d _2+7200=50 d _21\right)$
-
(10d_2 = 7200
)
- $1(\mathrm{~d}$ _2 = 720 $)$
- Therefore, $\backslash\left(d _1=720+120=840 \backslash\right)$
- Total distance $=\backslash\left(d_{-} 1+d _2=720+840=1560 \backslash\right) \mathrm{km}$

leverage

edu

4. Work and Time

- A's 1 day's work =
(|frac\{1\}\{10\}|)
- B's 1 day's work $=1($ (frac $\{1\}\{15\} \backslash)$
- Combined 1 day's work $=\backslash(\backslash f r a c\{1\}\{10\}+\backslash$ frac $\{1\}\{15\}=\$ frac $\{1\}\{6\} \backslash)$
- Work done by A and B together in 2 days = $\backslash(2 \backslash$ times $\backslash f r a c\{1\}\{6\}=\backslash f r a c\{1\}\{3\} \backslash)$
- Remaining work $=\backslash(1-\backslash f r a c\{1\}\{3\}=\backslash$ frac $\{2\}\{3\} \backslash)$
- B's remaining work =
(|frac\{2\}\{3\}
)
- Days taken by B to complete $\backslash(\mid$ frac $\{2\}\{3\} \backslash)$ of work $=\backslash(\mid$ frac $\{\backslash f r a c\{2\}\{3\}\}\{\mid$ frac\{ $\{1\}\{15\}\}=10 \backslash)$ days

Geometry Questions:

1. Triangles

- In right-angled triangle $A B C, \backslash(A B=6 \backslash) \mathrm{cm}, \backslash(B C=8$ \mathrm{cm}\).
- Using Pythagoras theorem, $\backslash\left(A C=\backslash s q r t\left\{A B^{\wedge} 2+B C^{\wedge} 2\right\}=\backslash \operatorname{sqrt}\left\{6^{\wedge} 2+8^{\wedge} 2\right\}=\backslash\right.$ sqrt $\{36+64\}=$ \sqrt\{100\} $=101$) cm

2. Circles

- Distance between centers $=$ sum of radii $=\backslash(5+3=8 \backslash) \mathrm{cm}$

3. Quadrilaterals

- In parallelogram $A B C D, \backslash\left(\right.$ langle $A=60^{\wedge} \backslash$ circ $\left.\backslash\right), \backslash(A B=8 \backslash) \mathrm{cm}$
- Let $\backslash(A D=x \backslash) \mathrm{cm}$
- Diagonal $\backslash(A C \backslash)$ splits parallelogram into two triangles: $\backslash(\mid$ triangle $A B C \backslash)$ and $\backslash(\mid$ triangle $A D C \backslash)$
- Using the cosine rule in $\($ (triangle ABC$)$):
$A C^{\wedge} 2=A B^{\wedge} 2+B C^{\wedge} 2-2$ \times $A B$ \times $B C$ \times \cos(langle $\left.A\right)$

Assuming $\backslash(A D=B C \backslash)$:
$A C^{\wedge} 2=8^{\wedge} 2+8^{\wedge} 2-2$ \times 8 \times 8 \times $\backslash \cos \left(60^{\wedge} \backslash \operatorname{circ}\right)$
$A C \wedge 2=64+64-64=64$
$A C=\backslash$ sqrt $\{64\}=8 \backslash \operatorname{sqrt}\{2\} \backslash$ text $\{\mathrm{cm}\}$

4. Mensuration

- Base radius $\backslash(r=7 \backslash) \mathrm{cm}$, height $\backslash(\mathrm{h}=14 \backslash) \mathrm{cm}$
- Surface area $=\backslash(2 \backslash$ pi $r(r+h) \backslash)$
$-\backslash(=2$ \pi \times $7 \backslash$ times $(7+14)=2 \backslash$ pi \times $7 \backslash$ times $21=294 \backslash$ pil $)$
- Approximate surface area $=\backslash(294$ \times $3.14=922.36 \backslash) \mathrm{cm}^{2}$

